4 research outputs found

    Designing normative open virtual enterprises

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Enterprise Information Systems on 23/03/2016, available online: http://www.tandfonline.com/10.1080/17517575.2015.1036927.[EN] There is an increasing interest on developing virtual enterprises in order to deal with the globalisation of the economy, the rapid growth of information technologies and the increase of competitiveness. In this paper we deal with the development of normative open virtual enterprises (NOVEs). They are systems with a global objective that are composed of a set of heterogeneous entities and enterprises that exchange services following a specific normative context. In order to analyse and design systems of this kind the multi-agent paradigm seems suitable because it offers a specific solution for supporting the social and contractual relationships between enterprises and for formalising their business processes. This paper presents how the Regulated Open Multiagent systems (ROMAS) methodology, an agent-oriented software methodology, can be used to analyse and design NOVEs. ROMAS offers a complete development process that allows identifying and formalising of the structure of NOVEs, their normative context and the interactions among their members. The use of ROMAS is exemplified by means of a case study that represents an automotive supply chain.This work was partially supported by the projects [PROMETEOII/2013/019], [TIN2012-36586-C03-01], [FP7-29493], [TIN2011-27652-C03-00] and [CSD2007-00022], and the CASES project within the 7th European Community Framework Programme [grant agreement number 294931].Garcia Marques, ME.; Giret Boggino, AS.; Botti Navarro, VJ. (2016). Designing normative open virtual enterprises. Enterprise Information Systems. 10(3):303-324. https://doi.org/10.1080/17517575.2015.1036927S303324103Cardoso, H. L., Urbano, J., Brandão, P., Rocha, A. P., & Oliveira, E. (2012). ANTE: Agreement Negotiation in Normative and Trust-Enabled Environments. Advances on Practical Applications of Agents and Multi-Agent Systems, 261-264. doi:10.1007/978-3-642-28786-2_33Chu, X. N., Tso, S. K., Zhang, W. J., & Li, Q. (2002). Partnership Synthesis for Virtual Enterprises. The International Journal of Advanced Manufacturing Technology, 19(5), 384-391. doi:10.1007/s001700200028Davidsson, P., & Jacobsson, A. (s. f.). Towards Norm-Governed Behavior in Virtual Enterprises. Studies in Computational Intelligence, 35-55. doi:10.1007/978-3-540-88071-4_3DeLoach, S. A., & Ojeda, J. C. G. (2010). O-MaSE: a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244. doi:10.1504/ijaose.2010.036984DI MARZO SERUGENDO, G., GLEIZES, M.-P., & KARAGEORGOS, A. (2005). Self-organization in multi-agent systems. The Knowledge Engineering Review, 20(2), 165-189. doi:10.1017/s0269888905000494Dignum, V. 2003. “A Model for Organizational Interaction: Based on Agents, Founded in Logic.” PhD diss., Utrecht University.Dignum, V., and F. Dignum. 2006.A Landscape of Agent Systems for the Real World. Technical Report 44-CS-2006-061. Utrecht: Institute of Information and Computing Sciences, Utrecht University.Dignum, V., Meyer, J.-J. C., Dignum, F., & Weigand, H. (2003). Formal Specification of Interaction in Agent Societies. Lecture Notes in Computer Science, 37-52. doi:10.1007/978-3-540-45133-4_4Garcia, E. 2013. “Engineering Regulated Open Multiagent Systems.” PhD diss., Universitat Politecnica de Valencia.Garcia, E., Giret, A., & Botti, V. (s. f.). Software Engineering for Service-Oriented MAS. Lecture Notes in Computer Science, 86-100. doi:10.1007/978-3-540-85834-8_9Garcia, E., Giret, A., & Botti, V. (2013). A Model-Driven CASE tool for developing and verifying regulated open MAS. Science of Computer Programming, 78(6), 695-704. doi:10.1016/j.scico.2011.10.009Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494-506. doi:10.1016/j.infsof.2010.12.012Garcia, E., Giret, A., & Botti, V. (2011). Regulated Open Multi-Agent Systems Based on Contracts. Information Systems Development, 243-255. doi:10.1007/978-1-4419-9790-6_20Garcia, E., Giret, A., & Botti, V. (2014). ROMAS Methodology. Handbook on Agent-Oriented Design Processes, 331-369. doi:10.1007/978-3-642-39975-6_11Hollander, C. D., & Wu, A. S. (2011). The Current State of Normative Agent-Based Systems. Journal of Artificial Societies and Social Simulation, 14(2). doi:10.18564/jasss.1750HORLING, B., & LESSER, V. (2004). A survey of multi-agent organizational paradigms. The Knowledge Engineering Review, 19(4), 281-316. doi:10.1017/s0269888905000317Julian, V., Rebollo, M., Argente, E., Botti, V., Carrascosa, C., & Giret, A. (2009). Using THOMAS for Service Oriented Open MAS. Lecture Notes in Computer Science, 56-70. doi:10.1007/978-3-642-10739-9_5Luck, M., Barakat, L., Keppens, J., Mahmoud, S., Miles, S., Oren, N., … Taweel, A. (2011). Flexible Behaviour Regulation in Agent Based Systems. Lecture Notes in Computer Science, 99-113. doi:10.1007/978-3-642-22427-0_8Meneguzzi, F., Modgil, S., Oren, N., Miles, S., Luck, M., & Faci, N. (2012). Applying electronic contracting to the aerospace aftercare domain. Engineering Applications of Artificial Intelligence, 25(7), 1471-1487. doi:10.1016/j.engappai.2012.06.004Presley, A., Sarkis, J., Barnett, W., & Liles, D. (2001). International Journal of Flexible Manufacturing Systems, 13(2), 145-162. doi:10.1023/a:1011131417956Saeki, M., & Kaiya, H. (2008). Supporting the Elicitation of Requirements Compliant with Regulations. Active Flow and Combustion Control 2018, 228-242. doi:10.1007/978-3-540-69534-9_18Such, J. M., García-Fornes, A., Espinosa, A., & Bellver, J. (2013). Magentix2: A privacy-enhancing Agent Platform. Engineering Applications of Artificial Intelligence, 26(1), 96-109. doi:10.1016/j.engappai.2012.06.009Telang, P. R., & Singh, M. P. (2009). Enhancing Tropos with Commitments. Lecture Notes in Computer Science, 417-435. doi:10.1007/978-3-642-02463-4_22Wooldridgey, M., & Ciancarini, P. (2001). Agent-Oriented Software Engineering: The State of the Art. Lecture Notes in Computer Science, 1-28. doi:10.1007/3-540-44564-1_

    Exploiting Social Commitments in Programming Agent Interaction

    Full text link
    Abstract. Modeling and regulating interactions among agents is a crit-ical step in the development of Multiagent Systems (MASs). Some re-cent works assume a normative view, and suggest to model interaction protocols in terms of obligations. In this paper we propose to model in-teraction protocols in terms of goals and commitments, and show how such a formalization promotes a deliberative process inside the agents. The proposal is implemented via JaCaMo+, an extension of JaCaMo, in which Jason agents can interact, while preserving their deliberative ca-pabilities, by exploiting commitment-based protocols, reified by special CArtAgO artifacts

    2COMM: A commitment-based MAS architecture

    Get PDF
    Abstract—Social expectations and social dependencies are a key characteristic of interaction, which should be explicitly accounted for by the agent platform, supporting the coordination of the involved autonomous peers. To this aim, it is necessary to provide a normative characterization of coordination and give a social meaning to the agents ’ actions. We focus on one of the best-known agent platforms, Jade, and show that it is possible to account for the social layer of interaction by exploiting commitment-based protocols, by modifying the Jade Methodology so as to include the new features in a seamless way, and by relying on the notion of artifact, along the direction outlined in the Mercurio proposal. This is a light revision of a paper presented a EMAS 2013. I
    corecore